Search results for "localized surface plasmon resonance"
showing 9 items of 9 documents
Plasmonic nanostructures for light trapping in thin-film solar cells
2019
Abstract The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic tec…
Plasmonic nanostructures for light trapping in thin-film solar cells
2019
M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) st…
Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles
2013
We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wavelength of the Localized Surface Plasmon Resonance of the nanoparticles with and without the presence of an organic layer. This method was applied to silver nanoparticles which seemed to be well protected from oxidation. Further experimental characterization via Surface Enhanced Raman Spectroscopy (SERS) measurements allowed to identify this protective shell as ethylene glycol. Combining LSPR and SERS measurements could thus give proof of both …
Quantifying the trade-off between useful and parasitic absorption of light for plasmonic light trapping in thin silicon films
2016
We apply a combination of photocurrent and photothermal spectroscopic techniques to experimentally quantify the trade-off between useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (?c-Si:H) films incorporating self-assembled silver nanoparticle arrays, located at the rear side, for improved light trapping via resonant plasmonic scattering. The photothermal technique is used to measure the total absorptance while the photocurrent spectroscopy accounts only for the photons absorbed in the ?c-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) li…
Plasmonic nanostructures for light trapping in photovoltaic
Metallic nanoparticles (NPs), sustaining localized surface plasmon resonances, are currently of great interest for enhancing light trapping in thin film solar cells. To be directly applicable in the photovoltaic industry, the NPs fabrication needs to be simple, reliable, low-cost and scalable. As such, self-assembly processes are most commonly used, and Ag is the preferred material, due to its high radiative efficiency and low imaginary permittivity. After exploring the correlation between structural and optical properties of Ag NPs fabricated by solid- state dewetting process on various substrates, we identified the fabrication conditions in which desirable NPs are obtained, but we also e…
Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 phot…
2013
Direct evidence of the effects of the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) in TiO2 photoanodes on the performance enhancement in quasi-solid-state dye-sensitized solar cells (DSCs) is reported by comparing gold/silica core–shell nanoparticles (Au@SiO2 NPs) and hollow silica nanoparticles with the same shell size of the core–shell nanoparticles. The Au nanoparticles were shelled by a thin SiO2 layer to produce the core–shell structure, and the SiO2 hollow spheres were made by dissolving the Au cores of the gold/silica core–shell nanoparticles. Therefore, the size and morphology of the SiO2 hollow spheres were the same as the Au@SiO2 NPs. The energy conver…
Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties
2013
The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…
Direct measurement of optical losses in plasmon-enhanced thin silicon films (Conference Presentation)
2018
Plasmon-enhanced absorption, often considered as a promising solution for efficient light trapping in thin film silicon solar cells, suffers from pronounced optical losses i.e. parasitic absorption, which do not contribute to the obtainable photocurrent. Direct measurements of such losses are therefore essential to optimize the design of plasmonic nanostructures and supporting layers. Importantly, contributions of useful and parasitic absorption cannot be measured separately with commonly used optical spectrophotometry. In this study we apply a novel strategy consisting in a combination of photocurrent and photothermal spectroscopic techniques to experimentally quantify the trade-off betwee…
Light trapping by plasmonic nanoparticles
2020
Abstract Metallic nanoparticles sustaining localized surface plasmon resonances are of great interest for enhancing light trapping in thin film photovoltaics. In this chapter, we explore the correlation between the structural and optical properties of self-assembled silver nanostructures fabricated by a solid-state dewetting process on various substrates relevant for silicon photovoltaics and later integrated into plasmonic back reflectors. Our study allows us to optimize the performance of nanostructures by identifying the fabrication conditions in which desirable circular and uniformly spaced nanoparticles are obtained. Second, we introduce a novel optoelectronic spectroscopic method that…